

Chicane Transverse-to-Longitudinal Emittance Exchange at ASTA

Christopher R. Prokop

Basics of Emittance Exchangers

- TDC+ Dispersive Section
- Dogleg or Dipsersion-controlled Chicane
- Resulting transfer matrix is block anti-diagonal

$$R_{EEX} = \begin{pmatrix} 0 & 0 & R_{15} & R_{16} \\ 0 & 0 & R_{25} & R_{26} \\ R_{51} & R_{52} & 0 & 0 \\ R_{61} & R_{62} & 0 & 0 \end{pmatrix}$$

- Triangular Hole → Ramped Bunch
- Slits → Bunch Train
- Big Hole & Little Hole → Drive Bunch & Witness Bunch
- 2nd order and collective effects reduce quality of exchange

ASTA Chicane EEX

- Remains in-line with initial beam
- Can increase dispersion, reduce cavity strength

$$\kappa \equiv \frac{eV_x}{pc} \frac{2\pi}{\lambda} = -\frac{1}{\eta_x}$$

- Additional quads shape current by controlling R_{51} and R_{52} .
- R_{65} of TDC canceled by accelerating mode cavity.
- Simulations performed in Elegant, and Impact-Z for SC+CSR

$$R_{EEX} = \begin{pmatrix} 0 & 0 & R_{15} & R_{16} \\ 0 & 0 & R_{25} & R_{26} \\ R_{51} & R_{52} & 0 & 0 \\ R_{61} & R_{62} & 0 & 0 \end{pmatrix}$$

Performance and Shaping

• Two criteria to judge:

$$\mathcal{F}_{zx} \equiv rac{arepsilon_{zf}}{arepsilon_{xi}}$$

Quantitative:
$$\mathcal{F}_{zx}\equivrac{arepsilon_{zf}}{arepsilon_{xi}}$$
 $\mathcal{F}_{xz}=rac{arepsilon_{xf}}{arepsilon_{zi}}$

Qualitative: Preservation of Shaping

R ₅₁	R ₅₂	F _{xz}	F _{zx}
0.21	-0.025	1.04	1.27
0.6	0.0	1.03	1.25
1.0	0.0	1.16	1.66
1.4	0.0	1.28	2.134

Implementation at ASTA

- (1) Low-energy experimental line (50 MeV)
 - Would be first-ever chicane EEX.
- (2) Use same basic design at 250 MeV after CM1.
 - Could be used as first stage of dielectric wakefield "energy doubler"
- (3) Potential Double EEX
 - Still many designs to consider.

